Abstract

The energetics and reaction mechanism of the migratory insertion of carbon monoxide and methyl isocyanide into the zirconium–carbon and titanium–carbon bonds in [calix[4](OMe)2(O)2–M–Me2], (M=Zr, Ti), have been investigated by combining static and dynamic density functional calculations. Two steps have been characterized: the coordination of the incoming nucleophilic moiety leading to relatively stable facial adducts; its subsequent insertion into the M–C bond, leading to η2-bound acyl or iminoacyl complexes, providing a rationale for the different behavior of CO and MeNC towards both insertion and deinsertion reactions. Our results indicate that the rate-determining step for the overall MeNC insertion into the M–C bond is its coordination to the electron-deficient metal center, with the titanium system featuring a higher energy barrier (12.7 versus 5.5 kcal mol−1). Ab initio molecular dynamics simulations have been performed on the Zr system by means of the Car–Parrinello method, to study the hitherto inaccessible mechanistic features of the insertion reactions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.