Abstract

In the age of proteomics, the role of certain amino acid residues and some post-translational modifications in noncovalent complex formation are gaining in importance, as the understanding of interactions between biological molecules, is at the heart of the structure function relationship puzzle. In this work, mass spectrometry is used to highlight ammonium- or guanidinium-aromatic interactions through Cation-pi bonds and ammonium- or guanidinium-phosphate interactions through salt bridge formation. Such interactions are crucial factors in certain ligand-receptor interactions and receptor-receptor interactions. In addition, the ability of phosphorylated residues and phosphorylated lipids to form noncovalent complexes with guanidinium and quaternary ammonium (mostly through Coulombic interactions) is demonstrated, and could explain the stability of certain membrane embedded protein, or a possible role for phosphorylation in protein-protein interactions. Dougherty's work demonstrates cation-pi interactions in intra-protein interactions and folding, the present work explores inter-peptide interactions, i.e., the formation of noncovalent complexes between peptides' epitopes containing adjacent aromatic residues and ones containing adjacent Arg as a model to better understand the role of cation-pi complexes in protein-protein interaction. Complexes of peptides containing aromatic residues with quaternary amines as well as the interaction of aromatic compounds, with the guanidinium group of Arg are also investigated. Considering that an inordinate number of therapeutic compounds contain aromatic rings and quaternary amines, the above-described interactions could possibly be of great importance in better understanding their mechanism of action.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.