Abstract
AbstractA new radiative transfer scheme, developed for use in a three‐dimensional dynamical model of the stratosphere and mesosphere, is used to consider the hypothetical state of the middle atmosphere in the absence of dynamical heat fluxes. Most previous work in this area has considered radiative equilibrium temperatures using a fixed solar forcing. This equilibrium state is shown to be different from a state calculated using a seasonal cycle of solar forcing; in particular, the winter pole is found to be warmer and the latitudinal temperature gradient across the edge of the polar night is found to be smaller. This difference is due to two processes. Firstly, latitudes just polewards of the edge of the polar night at solstice are in darkness for only a short period. Secondly, radiative time scales lengthen greatly as temperatures decrease, so that equilibrium cannot be reached before the sun reappears.Recent ozone climatologies are used to impose a realistic annual cycle of ozone on the model. It is found that the simulation of the lower stratosphere is in considerably better agreement with observations than previous radiation‐only calculations. the better simulation is shown to be, in most cases, due to the use of the new ozone climatology. It is also shown that a realistic ozone distribution is necessary for a good simulation of the polar stratopause at the summer solstice.A comparison of the observed and calculated annual cycle of temperature in the polar regions of the southern hemisphere lower stratosphere indicates that this region is under strong radiative control. This contrasts with an implied strong dynamical control for the same region in the northern hemisphere.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of the Royal Meteorological Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.