Abstract

AbstractTitanium dioxide is a promising photoanode material for water oxidation, but it is substantially limited by its poor efficiency in the visible light range. Herein, an innovative carbon/nitrogen coimplantation method is utilized to realize the “Midas touch” transformation of TiO2 nanowire (NW) arrays for photoelectrochemical (PEC) water splitting in visible light. These modified golden–yellow rutile TiO2 NW arrays (C/N‐TiO2) exhibit remarkably enhanced absorption in visible light regions and more efficient charge separation and transfer. As a result, the photocurrent density of carbon/nitrogen co‐implanted TiO2 under visible light (>420 nm) can reach 0.76 mA cm−2, which far exceeds the value of 3 µA cm−2 seen for pristine TiO2 nanowire arrays at 0.8 V versus Ag/AgCl. An incident photon to electron conversion efficiency of ≈14.8% is achieved at 450 nm on C/N‐TiO2 without any other cocatalysts. The ion implantation doping approach, combined with codoping strategies, is proved to be an effective strategy for enhancing the photoelectrochemical conversion and can enable further improvement of the PEC water‐splitting performance of many other semiconductor photoelectrodes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call