Abstract

Determining eustatic sea level during the Mid-Pliocene warm period (∼3.3 to 2.9 Ma) has been a central but elusive goal in the study of past warm climates. Estimates of eustatic sea level based on geologic data span a broad range; variation that we now recognize is due in part to geographically varying post-depositional displacement caused by glacial isostatic adjustment and dynamic topography. In this study, we combine field observations and glacial isostatic adjustment modeling to estimate the dynamic topography signal in three areas that are important to paleo-sea level studies of the Mid-Pliocene warm period (South Africa, West Australia and southeastern United States). We show that dynamic topography played a significant role in the post-depositional displacement of Pliocene, and even younger Pleistocene, shorelines. In this regard, we provide a robust paleo-sea level elevation data set, corrected for glacial isostatic adjustment, that can be used to evaluate predictions from mantle flow models of dynamic topography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call