Abstract
Abstract High topography in the realm of the rifted East African Plateau is commonly explained by two different mechanisms: (1) rift-flank uplift resulting from mechanical and/or isostatic relaxation and (2) lithospheric uplift due to the impingement of a mantle plume. High topography in East Africa has far-reaching effects on atmospheric circulation systems and the amount and distribution of rainfall in this region. While the climatic and palaeoenvironmental influences of high topography in East Africa are widely accepted, the timing, the magnitude and this spatiotemporal characteristic of changes in topography have remained unclear. This dilemma stems from the lack of datable, geomorphically meaningful reference horizons that could unambiguously record surface uplift. Here, we report on the formation of high topography in East Africa prior to Cenozoic rifting. We infer topographic uplift of the East African Plateau based on the emplacement characteristics of the c. 300 km long and 13.5 Ma Yatta phonolitic lava flow along a former river valley that drained high topography, centred at the present-day rift. The lava flow followed an old riverbed that once routed runoff away from the eastern flank of the plateau. Using a compositional and temperature-dependent viscosity model with subsequent cooling and adjusting for the Yatta lava-flow dimensions and the covered palaeotopography (slope angle), we use the flow as a ‘palaeo-tiltmeter’. Based on these observations and our modelling results, we determine a palaeoslope of the Kenya dome of at least 0.2° prior to rifting and deduce a minimum plateau elevation of 1400 m. We propose that this high topography was caused by thermal expansion of the lithosphere interacting with a heat source generated by a mantle plume. Interestingly, the inferred Mid-Miocene uplift coincides with fundamental palaeoecological changes including the two-step expansion of grasslands in East Africa as well as important radiation and speciation events in tropical Africa.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.