Abstract

The microwave spectra of benzothiazole were measured in the frequency range 2-26.5 GHz using a pulsed molecular jet Fourier transform microwave spectrometer. Hyperfine splittings arising from the quadrupole coupling of the 14N nucleus were fully resolved and analyzed simultaneously with the rotational frequencies. In total, 194 and 92 hyperfine components of the main species and the 34S isotopologue, respectively, were measured and fitted to measurement accuracy using a semi-rigid rotor model supplemented by a Hamiltonian accounting for the 14N nuclear quadrupole coupling effect. Highly accurate rotational constants, centrifugal distortion constants, and 14N nuclear quadrupole coupling constants were deduced. A large number of method and basis set combinations were used to optimize the molecular geometry of benzothiazole, and the calculated rotational constants were compared with the experimentally determined constants in the course of a benchmarking effort. The similar value of the χcc quadrupole coupling constant when compared to other thiazole derivatives indicates only very small changes of the electronic environment at the nitrogen nucleus in these compounds. The small negative inertial defect of -0.056 uÅ2 hints that low-frequency out-of-plane vibrations are present in benzothiazole, similar to the observation for some other planar aromatic molecules.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.