Abstract

The microwave plasma process inherently produces nanoparticulate powders with very narrow particle size distribution. During synthesis, the particles carry electric charges of equal sign. Therefore, by electrostatic repulsion, particle growth is reduced and agglomeration thwarted. This is shown by gas kinetic considerations and experimental results. Furthermore, this process allows coating of the particles with organic or inorganic phases, reducing interaction of different particles. This makes it possible to technically exploit properties, characteristic for isolated particles. Additionally, the coating process allows the combination of different properties such as superparamagnetism and luminescence, as it is demonstrated in different examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.