Abstract

In this study, a series of 2-Aryl-1H-benzo[d]imidazole derivatives were developed to target intra- and extracellular microtubule networks. Compounds O-7 and O-10 showed impressive anti-proliferative activity across various tested cell lines, demonstrating selectivity indexes of 151.7 and 61.9, respectively. O-7 achieved an IC50 value of 0.236 ± 0.096 μM, while O-10 showed an IC50 value of 0.622 ± 0.13 μM against A549 cell lines. The induction of early-stage apoptosis in a dose-dependent manner further underscored the potential of O-7 and O-10 as effective anti-proliferative agents. O-7 and O-10 exhibited substantial inhibition of wound closure, with wound closure percentages decreasing from 23% at 0 μM to 0.43% and 2.62% at 20 μM, respectively. Colony formation reduction rates were impressive, with O-7 at 74.2% and O-10 at 81.2%. These results indicate that the O-7 and O-10 can impede cancer cell migration and have a high potential to curtail colony formation. The mode of action investigations for O-7 and O-10 revealed that O-7 could inhibit in vitro tubulin polymerization and disrupt the intracellular microtubule cytoskeleton. This disruption led to cell cycle arrest in the G2/M phase, indicating that O-7 exerts its anticancer activity through microtubule destabilization. However, O-10 shows a different mode of action than O-7 and requires further investigation. Overall, our study showcases the potential of the synthesized benzimidazole derivatives as novel and selective anticancer agents, motivating further exploration of their pharmacological properties and therapeutic applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.