Abstract

For the development of the nervous system it is crucial that growth cones detect environmental information and react by altering their growth direction. The latter process is thought to depend on local stabilization of growth cone microtubules. We have obtained evidence of a role for the microtubule-associated protein MAP1B, in particular a mode 1 phosphoisoform of the molecule, P1-MAP1B, in this process. P1-MAP1B is tightly associated with the cytoskeleton and is present at highest concentrations in the distal axon and the growth cone of chick retinal ganglion cells. In growth cones turning at nonpermissive substrate borders, P1-MAP1B is restricted to regions which are stabilized. Unilateral neutralization of P1-MAP1B in one-half the growth cone by microscale chromophore-assisted laser inactivation changes growth cone motility, morphology, and growth direction. The results indicate a functional role for P1-MAP1B in local growth cone stabilization and thus growth cone steering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.