Abstract

Fibre–metal laminates (FMLs) are structural composites designed aiming to produce a damage-tolerant and high strength material. Their main characteristic is their very low fatigue crack propagation rates when compared to traditional aeronautical Al alloys. Their application in aeronautical structures demands a deep knowledge of a wide set of mechanical properties and technological values, including both fracture toughness and residual strength. The objectives of the present work were to present critical toughness values (JC and δ5C) of unidirectional FMLs obtained following a recently proposed methodology and to use them for critical crack length and residual strength predictions. Residual strengths of middle centre-cracked panels of Arall® 2 and 3 were predicted and compared to experimental values from the literature. The results showed that all FMLs evaluated presented higher fracture toughness and crack tolerance than their constituent alloys and that the measured fracture toughness was useful for an accurate prediction of residual strength in centre-cracked plates of Arall.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.