Abstract

One of promising approaches for further improving the sensitivity of microbolometer arrays with greatly-reduced pixel size is using the thermal-sensitive materials with higher performance. In this paper, Y-doped vanadium oxide (VOx) thin films prepared by a reactively sputtering process exhibit enhanced performance for the microbolometer application compared with frequently-applied VOx thin films. Both undoped and Y-doped VOx thin films are amorphous due to the relatively low deposition temperature. Y-doped VOx thin films exhibit smoother surface morphology than VOx due to the restrained expansion of particles during depositions. Y-doping increases the temperature coefficient of resistivity by over 20% for the doping level of 1.30at%. The change rate of resistivity, after aging for 72h, of thin films was reduced from about 15% for undoped VOx to 2% due to the introduction of Y. Moreover, Y-doped VOx thin films have a low 1/f noise level as VOx ones. Y-doping provides an attractive approach for preparing VOx thermal-sensitive materials with enhanced performance for microbolometers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call