Abstract

Two types of three-layered Al/Mg/Al clad sheets were fabricated by hot rolling. The first (sheet A) underwent a single pass with a small rolling reduction of 33% and the second (sheet B) underwent four passes with a large rolling reduction of 71%, and both were subsequently annealed at 200 °C for 1 h. Microstructural examination and tensile tests on the fabricated sheets revealed that 17.8-μm-thick intermetallic compound layers (IMCLs) appeared at AZ31/5052 interfaces in sheet B while none were observed in sheet A. The AZ31 layers in sheets A and B exhibited basal textures with intensities of 15.1 and 9.8, respectively, and only sheet A exhibited tensile twins (TTs) in the AZ31 layer. Recrystallization resulting in grains was preferred near the AZ31/5052 interface and the intersections between TTs. Owing to its larger rolling reduction, more extensive recrystallization was observed in the sheet B component layers than in sheet A. Sheet B exhibited better mechanical properties with a much higher ultimate tensile strength (UTS) than sheet A (230 versus 102 MPa) and a slightly larger elongation (19 versus 17%).This indicates that texture intensities and the extent of recrystallization of component layers have a significant effect upon the mechanical properties of clad sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.