Abstract

The shear punch testing (SPT) technique and the uniaxial tension tests were employed to evaluate the mechanical properties of the equal channel angularly pressed (ECAPed) AZ31 magnesium alloy. After extruding, the material was ECAPed for 1, 2, and 4 passes using route B C. The grain structure of the material was refined from 20.2 to 1.6 μm after 4 passes of ECAP at 200 °C. The 4 pass ECAPed alloy showed lower yield stress and higher ductility as compared to the as-extruded condition, indicating that texture softening has overcome the strengthening effects of grain refinement. The same trends in strength and ductility were also observed in shear punch testing. Similar shear strength and ductility values of the samples taken perpendicular to the extrusion direction (ED) and normal direction (ND) after 4 passes of ECAP indicated that {0 0 0 2} basal planes were inclined (∼45°) to the extrusion axis. The shear punch testing technique was found to be a useful method for verifying directional mechanical properties of the miniature samples of the ECAPed magnesium alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.