Abstract

Trabecular bone fracture represents a major health problem, therefore the improvement of its assessment is mandatory for the reduction of the economic and social burden. The micro-structure of the trabecular bone was found to have an important effect on trabecular mechanical behavior. Nonetheless, the high variability of the trabecular micro-structure suggests a search for the local characteristics leading to the fracture. This work concerns the study of the local trabecular fracture zone and its morphometrical characterization, aiming to prediction of the probable fracture zone.Ninety micro-CT datasets acquired before and after the mechanical compression of 45 trabecular specimens were analyzed. Specimens were extracted from the lower limbs of two donors: 4 femora and 4 tibiae. A previously validated tool for the identification of the 3D fracture zone was applied and the local fracture zone was identified and analyzed in all the specimens. Fifteen morphometrical parameters were extracted for each local fracture zone. Standard statistical non-parametric analysis was performed to compare fractured and un-fractured zones together with a classification analysis for the prediction of the fracture zone.The statistical analysis showed strong statistical difference in the micro-structure of the trabecular fractured zone compared to the un-fractured one. Ten out of 15 measured parameters, like SMI, Tb.Th, BV/TV, off-axis angle, BS/BV and others, showed a statistical difference between full 3D fractured and un-fractured zones. Nonetheless, a satisfactory classification of the fractured zone was possible with none of the identified parameters. On the other hand, a total classification accuracy of 95.5% was presented by the application of a linear classifier based on a combination of the most representative parameters, like BS/BV and the off-axis angle.The study points out the local essence and peculiar characteristics of the fracture zone, it highlights the weakness of some parameters in discriminate between fractured and un-fractured zones and encourage focussing the future studies over the local fracture zone itself with the aim to identify objective differences that could one day lead to the improvement of clinical assessment of fracture risk.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.