Abstract

The microstructure of a graphene-reinforced tennis racquet has been analysed using a combination of optical microscopy and Raman spectroscopy. It is shown that the main structural components in the racquet frame are high-strength carbon fibres in an epoxy resin matrix. It is also found that graphene-based nanoparticles are used to reinforce resin-rich regions in the shaft of the racquet at the discontinuity in the fibre tows, where the handle is joined to the racquet head. From a detailed analysis of the relative positions and intensities of the Raman G and 2D bands, it is demonstrated that the nanoparticles employed in the racquet are most probably graphite nanoplatelets which have been added to improve the mechanical properties of the resin-rich regions. The nomenclature used for describing graphene-based materials is also discussed in the context of this present study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.