Abstract
In the present work, the recycling of Si/SiC solid waste from photovoltaic industry for MgO-C refractories preparation has been introduced. The influence of solid waste powders as antioxidant additive on microstructure evolution, mechanical properties and thermal shock resistance of MgO-C refractories has been investigated systematically. With 4 wt% Si/SiC rich solid waste addition, the MgO-C refractories exhibited the highest strength (4.39 MPa) and residual Young's modulus (7.86 GPa) after firing at 1400 °C, compared to only Si or SiC-addition. The presence of iron in the solid waste also promoted the formation of MgO and Mg2SiO4 whiskers via catalyst-assisted method. Moreover, a dissolution-saturation-precipitation growth mechanism was used to explain the formation process of the whiskers. The improvements in strength as well as thermal shock resistance can be attributed to the microstructural evolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.