Abstract

In order to prepare stainless steel foams (SSFs) with high specific strength, cost-effective performance, and multiple relative density ranges, this work used CaCl2 as a space holder to prepare 304 and 430 SSF samples with different relative densities using the powder metallurgy method. The microstructure and the properties were compared and analyzed by optical microscope (OM), scanning electron microscope (SEM), energy dispersive spectrometer (EDS), X-ray diffraction (XRD), and a universal testing machine. The results show that the matrix of 304 SSFs is austenite and 430 is ferrite. In the quasi-static compression test, when the relative density was in the range of 0.33~0.12, their compressive strength increased with the relative density increasing; the maximum compressive strength of 304 SSFs reached 40.29 MPa and that of 430 SSFs was 49.79 MPa. While the compressive strength of 430 SSFs is significantly higher than 304 SSFs at a similar relative density, 304 SSFs show better stability in the plastic deformation stage. When the deformation reached densification, the maximum energy absorption value of 304 SSFs reached 15.94 MJ/m3, while 430 SSFs was 22.70 MJ/m3. The energy absorption value increased with the relative density increasing, and 430 SSFs exhibited a higher energy absorption capacity than 304 SSFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call