Abstract

Using X-ray diffraction, scanning and transmission electron microscopy, the microstructure of a new low-activation chromium-manganese austenitic steel with a high content of manganese and strong carbide-forming elements is studied. Its structure, dislocation character and particle composition are detailed. The processes taking place in the steel under cold-rolling deformation are described. It is shown that the mechanical properties of the new high-manganese steel revealed by testing at 20 and 650 °C are comparable with those of well-known analogs or exceed them. Relying on the structural studies, this is attributed to the dispersion and substructural strengthening. Better plastic properties of the steel are associated with the twinning-induced plasticity effect. It is shown that the steel fracture after tension at the test temperatures is mainly ductile dimple transcrystalline with the elements of ductile intercrystalline fracture (at 20 °C), while at 650 °C the signs of the latter disappear. The low-activation chromium-manganese austenitic steels characterized by increased austenite stability are thought to be promising structural materials for nuclear power engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call