Abstract
AlCoCrFeNi2.1 hot-rolled eutectic high entropy alloys were welded by laser welding, yielding a free-defect laser-welded connection. With the use of optical microscopy, EDS, EBSD, and XRD, the microstructure of the base metal (BM), fusion zone (FZ), and heat-affected zone (HAZ) of the joint was examined. The produced joint underwent tensile and micro-hardness testing as well as a fracture morphology examination. A similar tensile strength in the FZ and BM is measured, while a decrease in the elongation. The typical layered lamellar structures, in particular an FCC + BCC dual-phase structure, were all visible in the HAZ, BM, and FZ zones. The α-fiber and γ-fiber as well as other textures are determined by the ODF figure, indicating a potential orientation distribution of the as-hot rolled AlCoCrFeNi2.1 joint. A clear grain refinement characteristics in the fusion zone as a result of the uneven thermal cycling during the welding process. The results of the mechanical test demonstrate the base metal has the highest hardness value, i.e. 500–550 HV0.2, within the welded joint zone. The welded joint has a tensile strength ∼1200 MPa, which is marginally higher than ∼1150 MPa in the base metal, and an elongation that decreases by 20 % from base metal to welded joint, indicating a decrease in the plasticity of the welded joint. A combination of brittle and ductile fracture occurs in welded joints during tensile failure. This study may give possibilities for the engineering application of laser welding of AlCoCrFeNi2.1 eutectic high entropy alloy in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.