Abstract
Selective laser melting (SLM) of pure molybdenum encounters all the difficulties of SLM metals due to its intrinsic properties (high melting point, high ductile-to-brittle transition temperature and high surface tension). In this work, we studied the influence of key factors such as powder morphology and processing parameters on SLM fabricated pure molybdenum. Pure molybdenum with a relative density of 99.1% was fabricated by SLM using optimized processing parameters. The formation mechanisms for densification behavior and crack growth behaviors are systematically analyzed. Electron backscattered diffraction analysis indicates that the interlocking grain boundary structure and stretch columnar grains can increase bonding force and inhibit crack growth. The balling and cracking can be reduced by adding support structure and suppressing oxygen content. The hardness of SLM-fabricated molybdenum exceeding 260 HV, which is 30–37% higher than Mo prepared by conventional manufacturing methods, mainly attributed to the fine grains and dislocation strengthening in the SLM process. The bending strength of SLM-ed Mo reached 280 ± 52 Mpa. The fracture mode of SLM Mo was intergranular. This study provides a new route for the fabrication of refractory metals with a complex structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.