Abstract
The microstructural and textural evolution of the Mg-6Li-1Zn (LZ61), Mg-8Li-1Zn (LZ81), and Mg-12Li-1Zn (LZ121) alloys were investigated in the as-extruded condition and after being equal channel angularly pressed (ECAPed) for one, two, and four passes. The shear punch testing technique was employed to evaluate the room-temperature mechanical properties of the extruded and ECAPed materials. Microstructural analysis revealed that the grain refinement in both LZ61 and LZ121 alloys could be achieved after multipass ECAP through the continuous dynamic recovery and recrystallization process. For the LZ81 alloy, however, the occurrence of Li loss in the four passes of ECAP condition partly offsets the grain refining effect of the ECAP process by increasing grain size and volume fraction of the α phase. Textural studies in both LZ61 and LZ81 alloys indicated that the developed fiber texture after extrusion could be replaced by a typical ECAP texture, where the basal planes are mainly inclined about 45 deg to the extrusion axis. The increased volume fraction of the β phase in LZ81 significantly affected the α-phase texture by decreasing the intensity of the maximum orientations of the basal and prismatic planes in all deformation conditions, compared with the LZ61 alloy. It was also observed that the abnormal grain growth might be promoted by the strong texture developed in the extruded LZ121 alloy. This texture became more randomized when the number of ECAP passes increased. The SPT results showed that the shear yield stress, ultimate shear strength and normalized displacement in all studied alloys were improved through the grain refinement strengthening caused by ECAP. It was also established that increasing Li content decreased the shear strength and enhanced the shear elongation in all deformation conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.