Abstract

Graphene aerogel-poly (vinylidene fluoride) (GA-PVDF) nanoporous composites with different concentrations of PVDF are fabricated. Scanning electron microscopy reveals that PVDF films with a typical thickness below 100 nm are coated at the graphene sheets in the nanoporous composites. The GA-PVDF composites show excellent compressibility, ductility and mechanical strength, as well as better sensitivity of stress-dependent electrical resistance compared with those of GAs. The improved mechanical and electro-mechanical behaviours of nanoporous composites are ascribed to the PVDF which possesses piezoelectricity. The structural properties of the graphene-PVDF nanosized hybrid scaffolds are analyzed by dynamical mechanical relaxation. The results demonstrate that the nanoporous composites could be used as high-performance sensors, actuators and kinetic energy harvesters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call