Abstract

ABSTRACTCeO2 ceramics were manufactured in the form of surface coatings deposited onto various substrates by sol-gel technology. The size of the CeO2 crystallites, dried at room temperature, was about 5 nm and did not change significantly after heating, up to 680 K. Further increase of the temperature resulted in a rapid growth of crystallites. The process of growth depends also on the film thickness and nature of substrate. The results obtained using thermogravimetric analysis (TGA) and infrared spectroscopy (IR) demonstrated that the thermal decomposition of gel was completed at about 750 K. There was no evident texture in both the as-deposited state and after heat-treatment. X-ray diffraction (XRD), the atomic force microscopy (AFM), and transmission electron microscopy (TEM) were used to characterize the structure of coatings. The examples of application of CeO2 ceramics as coatings for high temperature corrosion protection are presented. The role of size of CeO2 particles in modification of grain boundary transport is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.