Abstract

This work reports dynamic video images of the influence of ultrasonic cavitation on the sonocrystallisation of ice at a microscopic level. This has been achieved through the construction of a unique ultrasonic system for an optical microscope. The system consists of (1) an ultrasonic cold stage, (2) a temperature control system, and (3) a microscope and imaging setup. This allows the temperature of a sample to be systematically controlled while it is subjected to simultaneous excitation with alternating pressures in the ultrasonic frequency range. Both the amplitude of excitation and the frequency can be varied. Experiments on ice crystals in pure water and sucrose solutions were conducted. Three distinct phenomena were observed. Firstly, there is a tendency for cavitation bubbles to form at the grain boundaries between ice crystals. Secondly, there is a progressive melting of ice by cavitation bubbles which appear to eat their way into the ice phase. Thirdly, the dendritic ice structures may fragment under the influence of ultrasound, thus increasing the number of nuclei which may subsequently grow (secondary nucleation). These observations form the basis of a significantly enhanced understanding and exploitation of the sonocrystallisation of ice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call