Abstract

Severe burn causes acute lung injury in many victims, but the related mechanisms have been barely investigated. microRNAs (miRNAs) important regulators in numerous physiological and pathophysiological process. However, the roles of miRNAs in burn lung injury are untested. Six healthy male Sprague-Dawley rats were randomly assigned into burn and sham groups. Lung injury was evaluated by hematoxylin and eosin (HE) staining at 24 h after injury. Differentially expressed miRNAs were determined by array hybridization and verified by real-time quantitative polymerase chain reaction (RT-qPCR). Bioinformatics analysis was undertaken to predict the target genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes databases were employed to identify potentially related biological processes and pathways, respectively. Neutrophil infiltration and apoptosis of the lung were confirmed by immunohistochemical staining of myeloperoxidase (MPO) and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL). HE sections showed obvious lung injury, and 21 upregulated and three downregulated miRNAs were detected. Target genes of these miRNAs were most highly enriched in inflammation and apoptosis related GO biological processes and pathways. Inflammation and apoptosis were confirmed by MPO and TUNEL staining. The differentially expressed miRNAs most likely participate in burn-induced lung injury by being involved in inflammation and apoptosis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call