Abstract

Three-dimensional organotypic culture using reconstituted basement membrane matrix Matrigel (rBM 3-D) is an indispensable tool to characterize morphogenesis of mammary epithelial cells and to elucidate the tumor-modulating actions of extracellular matrix (ECM). microRNAs (miRNAs) are a novel class of oncogenes and tumor suppressors. The majority of our current knowledge of miRNA expression and function in cancer cells is derived from monolayer 2-D culture on plastic substratum, which lacks consideration of the influence of ECM-mediated morphogenesis on miRNAs. In the present study, we compared the expression of miRNAs in rBM 3-D and 2-D cultures of the non-invasive MCF-7 and the invasive MDA-MB231 cells. Our findings revealed a profound difference in miRNA profiles between 2-D and rBM 3-D cultures within each cell type. Moreover, rBM 3-D culture exhibited greater discrimination in miRNA profiles between MCF-7 and MDA-MB231 cells than 2-D culture. The disparate miRNA profiles correlated with distinct mass morphogenesis of MCF-7 and invasive stellate morphogenesis of MDA-MB231 cells in rBM 3-D culture. Supplementation of the tumor promoting type I collagen in rBM 3-D culture substantially altered the miRNA signature of mass morphologenesis of MCF-7 cells in rBM 3-D culture. Overexpression of the differentially expressed miR-200 family member miR429 in MDA-MB231 cells attenuated their invasive stellate morphogenesis in rBM 3-D culture. In summary, we provide the first miRNA signatures of morphogenesis of human breast cancer cells in rBM 3-D culture and warrant further utilization of rBM 3-D culture in investigation of miRNAs in breast cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.