Abstract

A theory of microdamageability is constructed for fibrous laminated composites consisting of transversally isotropic fibers and a microdamaged isotropic porous binder. Microdamages in the binder are simulated by pores filled with compression-resisting particles of the destroyed material. Damage in a microvolume of the binder is described by the Schleicher–Nadai strength criterion, which allows for the difference between the ultimate tensile and compressive loads. The ultimate strength is a random function of coordinates with the Weibull distribution. The stress–strain state and effective characteristics of the material are determined by solving the stochastic equations of elastic theory for a fibrous laminated composite with a porous binder. The equations of deformation and microdamageability are closed by the equations of porosity balance in the binder. Nonlinear diagrams of the concurrent processes of deformation of the fibrous laminated material and microdamage of the matrix for various physical and geometrical parameters are constructed

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call