Abstract

With the steady increase of the sample size of observed microlenses towards the central regions of the Galaxy, the main source of the uncertainty in the lens mass will shift from the simple Poisson noise to the intrinsic non-uniqueness of our dynamical models of the inner Galaxy, particularly the Galactic bar. We use a set of simple self-consistent bar models to investigate how the microlensing event rate varies as a function of axis ratio, bar angle and velocity distribution. The non-uniqueness of the velocity distribution of the bar model adds a significant uncertainty (by about a factor of 1.5) to any prediction of the lens mass. Kinematic data and self-consistent models are critical to lift the non-uniqueness. We discuss the implications of these results for the interpretation of microlensing observations of the Galactic bulge. In particular we show that Freeman bar models scaled to the mass of the Galactic bulge/bar imply a typical lens mass of around 0.8 M⊙, a factor of 3–5 times larger than the value from other models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.