Abstract
The micro-optical ring electrode (MORE) is a photoelectrochemical device based on a ring microelectrode that uses the insulating material interior to the ring electrode as a light guide. In this paper, we derive asymptotic analytical expressions for the steady-state, transport limited photocurrent generated at MOREs with thin microrings ((ring inner radius)/(ring outer radius) values > 0.99) for two general types of photoelectrochemical system (a) the PE (photophysical-electrochemical) system, wherein the photoexcited species itself is directly detected on the ring; and (b) the PCE (photophysical-chemical-electrochemical) system, wherein the photoexcited species undergoes a homogeneous electron transfer reaction prior to electrochemical detection. The expressions are generated by exploiting the properties of discontinuous integrals of Bessel functions to solve the diffusion equation for the photogenerated electroactive species both inside and outside the beam. The resultant solutions are then matched at the beam surface. The expressions themselves are used to design experimental protocols that allow for the complete characterization of the photoelectrochemical kinetics of a system and are tested by using them to interpret the results of a MORE study of the photoelectrochemical behaviour of the Ru(bipy)(3)(2+)/Fe3+ photosensitiser/ quenching agent system. The value of the Stern-Volmer constant for the quenching of photoexcited Ru(bipy)(3)(2+) by Fe obtained (0.36 m(3) mol(-1)) compares favourably with the value obtained from fluorescence measurements (0.9 m(3) mol(-1)). (c) 2006 Elsevier B.V. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.