Abstract

The nature of the microcirculation of the diaphyseal portion of long bones and the adjacent bone marrow is poorly understood. The purpose of this study was to describe the blood supply in the diaphyseal cortex and the relationship of the bone vascular circulation to that of the bone marrow in the growing rat. India ink-gelatin was infused in the arterial system of 3-month-old rats and the vascularization was determined from histological sections. In some studies the periosteal circulation was blocked but the nutrient and metaphyseal arteriole systems were left intact. In the growing rat, most of the vascular flow appears to be centripetally through the diaphyseal cortex and this appears to be the primary blood supply for the adjacent bone marrow. The India ink traversed the cortex and entered the marrow through osteal canals at the endocortical surface. At the marrow-endocortical bone surface interface, ink exiting from the osteal canals filled the adjacent marrow sinusoids in what appeared as "bush-like" structures. From the bone marrow the ink appeared to drain into the central vein. Some arterioles from the nutrient system were found to penetrate the inner two thirds of the cortical bone and then re-enter the bone marrow. The centripetal flow of blood and the importance of the cortical flow for perfusion of the hemopoietic tissue was further documented when periosteal flow was obstructed. In this situation, the cortical bone and adjacent bone marrow were not perfused while the nutrient system and central vein were filled with ink.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call