Abstract

Many newly synthesized proteins obtain disulfide bonds in the bacterial periplasm, the endoplasmic reticulum (ER) and the mitochondrial intermembrane space. The acquisition of disulfide bonds is critical for the folding, assembly and activity of these proteins. Spontaneous oxidation of thiol groups is inefficient in vivo, therefore cells have developed machineries that catalyse the oxidation of substrate proteins. The identification of the machinery that mediates this process in the intermembrane space of mitochondria, known as MIA (mitochondrial intermembrane space assembly), provided a unique mechanism of protein transport. The MIA machinery introduces disulfide bonds into incoming intermembrane space precursors and thus tightly couples the process of precursor translocation to precursor oxidation. We discuss our current understanding of the MIA pathway and the mechanisms that oversee thiol-exchange reactions in mitochondria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call