Abstract

We have measured and analyzed the temperature and gate voltage dependencies of the field-effect mobility in organic thin-film transistors. We find that the mobility prefactor increases exponentially with the activation energy in agreement with the Meyer–Neldel rule. This behavior is demonstrated in the mobility data of solution-processed pentacene, poly(2,5-thienylene vinylene) and in mobility data reported in literature. Surprisingly, the characteristic Meyer–Neldel energy for all analyzed materials is close to 40 meV. Possible implications for the charge transport mechanism in these materials are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.