Abstract

We study a class of design problems in solid mechanics, leading to a variation on the classical question of equi-dimensional embeddability of Riemannian manifolds. In this general new context, we derive a necessary and sufficient existence condition, given through a system of total differential equations, and discuss its integrability. In the classical context, the same approach yields conditions of immersibility of a given metric in terms of the Riemann curvature tensor. In the present situation, the equations do not close in a straightforward manner, and successive differentiation of the compatibility conditions leads to a new algebraic description of integrability. We also recast the problem in a variational setting and analyze the infimum of the appropriate incompatibility energy, resembling the non-Euclidean elasticity. We then derive a -convergence result for dimension reduction from 3d to 2d in the Kirchhoff energy scaling regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.