Abstract

Let \(G=(V,E)\) be a connected graph (or hypergraph) and let \(d(x,y)\) denote the distance between vertices \(x,y\in V(G)\). A subset \(W\subseteq V(G)\) is called a resolving set for \(G\) if for every pair of distinct vertices \(x,y\in V(G)\), there is \(w\in W\) such that \(d(x,w)\neq d(y,w)\). The minimum cardinality of a resolving set for \(G\) is called the metric dimension of \(G\), denoted by \(\beta(G)\). The circulant graph \(C_n(1,2,\ldots,t)\) has vertex set \(\{v_0,v_1,\ldots,v_{n-1}\}\) and edges \(v_iv_{i+j}\) where \(0\leq i\leq n-1\) and \(1\leq j\leq t\) and the indices are taken modulo \(n\) (\(2\leq t\leq\left\lfloor\frac{n}{2}\right\rfloor\)). In this paper we determine the exact metric dimension of the circulant graphs \(C_n(1,2,\ldots,t)\), extending previous results due to Borchert and Gosselin (2013), Grigorious et al. (2014), and Vetrik (2016). In particular, we show that \(\beta(C_n(1,2,\ldots,t))=\beta(C_{n+2t}(1,2,\ldots,t))\) for large enough \(n\), which implies that the metric dimension of these circulants is completely determined by the congruence class of \(n\) modulo \(2t\). We determine the exact value of \(\beta(C_n(1,2,\ldots,t))\) for \(n\equiv 2\bmod 2t\) and \(n\equiv (t+1)\bmod 2t\) and we give better bounds on the metric dimension of these circulants for \(n\equiv 0\bmod 2t\) and \(n\equiv 1 \bmod 2t\). In addition, we bound the metric dimension of Cartesian products of circulant graphs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.