Abstract

BackgroundAs a primarily N6-methyladenosine methyltransferase, methyltransferase 3 (METTL3) plays a crucial role in nonalcoholic fatty liver disease. However, its regulatory mechanism in steatosis remains unknown. MethodsAlpha mouse liver 12 (AML12) cells were induced by free fatty acids (FFA). Triglycerides, lipid droplet assay, and Oil Red O staining were performed to evaluate steatosis. The expression of METTL3 and cytochrome P450 family 4 subfamily f polypeptide 40 (CYP4F40) was measured using Western blotting, real-time quantitative polymerase chain reaction, and dual-luciferase reporter assay. Triglycerides, total cholesterol, almandine aminotransferase, and aspartate aminotransferase were assayed after cinnamaldehyde treatment. Transcriptomics and metabolomics were performed to determine how METTL3 and cinnamaldehyde regulate steatosis. ResultsMETTL3 protein level was reduced in FFA-induced steatosis in AML12 cells, and METTL3 knockdown aggravated the steatosis. Cinnamaldehyde alleviated steatosis by increasing METTL3 expression. A combined transcriptomics and metabolomics analysis revealed that METTL3 knockdown reduced CYP4F40 expression and reduced the level of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Cinnamaldehyde promoted CYP4F40 expression by increasing METTL3 and increased the levels of capric acid, gamma-linolenic acid, arachidonic acid, and docosapentaenoic acid. Finally, the beneficial effects of cinnamaldehyde on steatosis were reversed after METTL3 knockdown. ConclusionsMETTL3 knockdown aggravated steatosis in AML12 cells through CYP4F40-mediated fatty acid metabolism, and cinnamaldehyde alleviated steatosis via the METTL3-CYP4F40 pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call