Abstract

We reduce the solution of contact problems in the interaction of rigid bodies (dies) with thin-walled elements (one-dimensional problems) to Volterra integral equations. We study the effect of the model describing the stress-strain state of plates on the type of integral equations and the structure of their solutions. It is shown that taking account of reducing turns the problem into a Volterra integral equation of second kind, which has a unique solution that is continuous and agrees quite well with the results obtained from the three-dimensional theory. In the case of a theory of Timoshenko type the problem is reduced to a Volterra three-dimensional theory. In the case of a theory of Timoshenko type the problem is reduced to a Volterra integral equation of first kind that has a unique continuous solution; but for dies without corners the Herz condition does not hold (p(a) ≠ 0), and the contact pressure assumes its maximal value at the end of the zone of contact. For thin-walled elements, whose state can be described by the classical Kirchhoff-Love theory, the integral equation of the problem (a Volterra equation of first kind) has a solution in the class of distributions. The contact pressure is reduced to concentrated reactions at the extreme points of the contact zone. We give a comparative analysis of the solutions in all the cases just listed (forces, normal displacements, contact pressures). Three figures, 1 table. Bibliography: 5 titles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.