Abstract

The method of moments is a generic name given to projective methods in which a functional equation in an infinite dimensional function space is approximated by a matrix equation in a finite dimensional subspace. Any projective method can be put into the language and notation of the method of moments, hence the concept is very general. Any linear field problem can be formulated either by differential equations (Maxwell's equations plus boundary conditions) or by integral equations (Green's functions plus superposition). Furthermore, neither the differential formulation nor the integral formulation for any particular problem is unique. The method is applied to electromagnetic scattering from conducting bodies. Computational examples are given for a sphere to illustrate a numerical implementation of the method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.