Abstract

This paper studies the propagation of steady-state oscillations in an irregular rectangular waveguide. The irregularity of the waveguide is caused by the presence inside it of a metallic inclusion in the form of a cylindrical inductive cylinder. To solve the problem in a complete electrodynamic formulation, it is necessary to investigate the boundary problem for the system of Maxwell equations. To study the waveguide system consisting of a waveguide with a well-conducting inclusion, the method of integral equations was applied. The cores of the integral equations are defined through the Green functions of the unfilled waveguide, written in terms of the waveguide modes. Algorithms for their calculation are developed on the basis of the selection of a logarithmic singularity, and algorithms for summing up the series belonging to them are created. The possibilities of the method of integral equations are illustrated with examples of calculating the reflection and transmission coefficients from inductive pins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.