Abstract

ABSTRACTThis paper describes the combination of the method of fundamental solutions (MFS) and the dual reciprocity method (DRM) as a meshless numerical method to solve problems of thin plates resting on Winkler foundations under arbitrary loadings, where the DRM is based on the augmented polyharmonic splines constructed by splines and monomials. In the solution procedure, the arbitrary distributed loading is first approximated by the augmented polyharmonic splines (APS) and thus the desired particular solution can be represented by the corresponding analytical particular solutions of the APS. Thereafter, the complementary solution is solved formally by the MFS. In the mathematical derivations, the real coefficient operator in the governing equation is decomposed into two complex coefficient operators. In other words, the solutions obtained by the MFS-DRM are first treated in terms of these complex coefficient operators and then converted to real numbers in suitable ways. Furthermore, the boundary conditions of lateral displacement, slope, normal moment, and effective shear force are all given explicitly for the particular solutions of APS as well as the kernels of MFS. Finally, numerical experiments are carried out to validate these analytical formulas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.