Abstract

Methanol-induced conformational transitions of hen egg white lysozyme were investigated with a combined use of far- and near-UV CD and NMR spectroscopies, ANS binding and small-angle X-ray scattering. Addition of methanol induced no global change in the native conformation itself, but induced a transition from the native state to the denatured state which was highly cooperative, as shown by the coincidence of transition curves monitored by the far- and near-UV CD spectroscopy, by isodichroic points in the far- and near-UV CD spectra and by the concomitant disappearance of individual 1H NMR signals of the native state. The ANS binding experiments could detect no intermediate conformer similar to the molten globule state in the process of the methanol denaturation. However, at high concentration of methanol, e.g., 60% (v/v) methanol/water, a highly helical state (H) was realized. The H state had a helical content much higher than the native state, monitored by far-UV CD spectroscopy, and had no specific tertiary structure, monitored both by near-UV CD and NMR spectroscopy. The radius of gyration in the H state, 24.9 angstroms, was significantly larger than that in the native state (15.7 angstroms). The Kratky plot for the H state did not show a clear peak and was quite similar to that for the urea-denatured state, indicating a complete lack of globularity. Thus we conclude that the H state has a considerably expanded, flexible broken rod-like conformation which is clearly distinguishable from the "molten globule" state. The stability of both N and H states depends on pH and methanol concentration. Thus a phase diagram involving N and H was constructed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.