Abstract
Nucleoside diphosphate kinases (Nmes or NDPKs) have been implicated in a multitude of cellular processes, including an important role in metastasis suppression, and several enzymatic activities have been assigned to the Nme family. Nevertheless, for many of these processes, it has not been possible to establish a strong connection between Nme enzymatic activity and the relevant biological function. We hypothesized that, in addition to its known enzymatic functions, members of the Nme family might also regulate signaling cascades by acting on key signal transducers. Accordingly, here we show that Nme1 directly interacts with the calcium/calmodulin-dependent kinase II (CaMKII). Using purified proteins, we monitored the phosphorylation of a number of CaMKII substrates and determined that at nanomolar levels Nme1 enhances the phosphorylation of T-type substrates; this modulation shifts to inhibition at low micromolar concentrations. Specifically, the autophosphorylation of CaMKII at Thr286 is completely inhibited by 2 μM Nme1, a feature that distinguishes Nme1 from other known endogenous CaMKII inhibitors. Importantly, CaMKII inhibition does not require phosphotransfer activity by Nme1 because the kinase-dead Nme1 H118F mutant is as effective as the wild-type form of the enzyme. Our results provide a novel molecular mechanism whereby Nme1 could modulate diverse cellular processes in a manner that is independent of its known enzymatic activities.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.