Abstract
Osteopontin (OPN) is an acidic hydrophilic glycophosphoprotein that was first identified as a major sialoprotein in bones. It functions as a cell attachment protein displaying a RGD cell adhesion sequence and as a cytokine that signals through integrin and CD44 cell adhesion molecules. OPN is also implicated in human tumor progression and cell invasion. OPN has intrinsic transforming activity, and elevated OPN levels promote metastasis. OPN gene expression is also strongly activated in avian fibroblasts simultaneously transformed by the v-myc and v-mil(raf) oncogenes. Here we have investigated the solution structure of a 220-amino acid recombinant OPN protein by an integrated structural biology approach employing bioinformatic sequence analysis, multidimensional nuclear magnetic resonance spectroscopy, synchrotron radiation circular dichroism spectroscopy, and small-angle X-ray scattering. These studies suggest that OPN is an intrinsically unstructured protein in solution. Although OPN does not fold into a single defined structure, its conformational flexibility significantly deviates from random coil-like behavior. OPN comprises distinct local secondary structure elements with reduced conformational flexibility and substantially populates a compact subspace displaying distinct tertiary contacts. These compacted regions of OPN encompass the binding sites for α(V)β(III) integrin and heparin. The conformational flexibility combined with the modular architecture of OPN may represent an important structural prerequisite for its functional diversity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.