Abstract

The rhenium(V) oxo complex oxo(triphenylphosphine) (bis(3,5-di-tert-butyl-2-phenoxo)amido)rhenium(V), (ONOCat)ReO(PPh3), reacts with molecular oxygen to give triphenylphosphine oxide and the dimeric rhenium(VII) complex fac,anti-(ONOCat)Re(O)(μ-O)2Re(O)(ONOCat). The ONO ligand adopts an unusual fac geometry, presumably to maximize π donation to rhenium; strong π donation is substantiated by the intraligand bond distances (metrical oxidation state = -2.24(9)). Addition of the N-heterocyclic carbene ligand IMes to fac,anti-(ONOCat)Re(O)(μ-O)2Re(O)(ONOCat) cleaves the dimer into monomeric C1-symmetric fac-(ONOCat)ReO2(IMes). The monorhenium(VII) complex is deoxygenated by PMe2Ph to give the rhenium(V) compound (ONOCat)ReO(IMes), which can be independently prepared by ligand substitution of (ONOCat)ReO(PPh3). The degree of stereochemical rigidity exhibited by the dioxo compound, as established by dynamic NMR spectroscopy, excludes the intermediacy of mer-(ONOQ)ReVO2(IMes) in this oxygen atom transfer reaction. Thus, oxygen atom transfer takes place preferentially by direct reduction of the oxorhenium(VII) moiety (classical oxygen atom transfer) rather than through initial internal electron transfer and ligand-centered reduction of an oxorhenium(V)-iminoquinone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call