Abstract
In aqueous solution, the reducing sugar phosphates D-arabinose 5-phosphate, D-ribose 5-phosphate, D-fructose 1,6-bisphosphate, D-fructose 6-phosphate, D-glucose 6-phosphate and D-mannose 6-phosphate provide metal-binding sites at their glycose core on reaction with Pd(II)(en) or M(III)(tacn) residues (M = Ga, Co; en = ethylenediamine, tacn = 1,4,7-triazacyclononane). The individual species were detected by one- and two-dimensional NMR spectroscopy. The coordination patterns are related to the metal-binding modes of the respective parent glycoses. In detail, ribo- and arabinofuranose phosphate favour kappaO(1,3) coordination, whereas the ketofuranose core of fructose phosphate and fructose bisphosphate provides the kappaO(2,3) chelator thus maintaining the configuration of the respective major solution anomer. On palladium excess, D-fructose 6-phosphate is metallated twice in a unique kappaO(1,3):kappaO(2,4) metallation pattern. Dimetallation is also found for the aldohexose phosphates. A mixed glycose-core-phosphate chelation was detected for Pd(II)(en) and M(III)(tacn) residues with M = Al, Ga in the pH range just above the physiological pH for the D-fructose 1,6-bisphosphate ligand. The results are discussed in relation to D-fructose-1,6-bisphosphate-metabolism in class-II aldolases.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.