Abstract

Maintaining adequate performance in dynamic and uncertain settings has been a perennial stumbling block for intelligent systems. Nevertheless, any system intended for real-world deployment must be able to accommodate unexpected change—that is, it must be perturbation tolerant. We have found that metacognitive monitoring and control—the ability of a system to self-monitor its own decision-making processes and ongoing performance, and to make targeted changes to its beliefs and action-determining components—can play an important role in helping intelligent systems cope with the perturbations that are the inevitable result of real-world deployment. In this article we present the results of several experiments demonstrating the efficacy of metacognition in improving the perturbation tolerance of reinforcement learners, and discuss a general theory of metacognitive monitoring and control, in a form we call the metacognitive loop. ||This research is supported in part by the AFOSR and ONR.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.