Abstract

Bipolar cells are retinal interneurons that receive synaptic input from photoreceptors. Glutamate, the photoreceptor transmitter, hyperpolarizes On bipolar cells by closing nonselective cation channels, an effect mediated by the metabotropic receptor mGluR6. Previous studies of mGluR6 transduction have suggested that the receptor couples to a phosphodiesterase (PDE) that preferentially hydrolyzes cGMP, and that cGMP directly gates the nonselective cation channel. This hypothesis was tested by dialyzing On bipolar cells with nonhydrolyzable analogs of cGMP. Whole-cell recordings were obtained from On bipolar cells in slices of larval tiger salamander retina. Surprisingly, On bipolar cells dialyzed with 8-(4-chlorophenylthio)-cyclic GMP (8-pCPT-cGMP), or 8-bromo-cyclic GMP (8-Br-cGMP) responded normally to glutamate or L-2-amino-4-phosphonobutyrate (L-APB). Response amplitudes and kinetics were not significantly altered compared with cells dialyzed with cGMP alone. Comparable results were obtained with the PDE inhibitor 3-isobutyl-1-methyl-xanthine (IBMX) or with 8-pCPT-cGMP and IBMX together, indicating that PDE is not required for mGluR6 signal transduction. Addition of the G-protein subunit G(o)alpha to the pipette solution suppressed the cation current and occluded the glutamate response, whereas dialysis with G(i)alpha or with transducin Gbetagamma had no significant effect on either the cation current or the response. Dialysis of an antibody directed against G(o)alpha also reduced the glutamate response, indicating a functional role for endogenous G(o)alpha. These results indicate that mGluR6 may signal through G(o), rather than a transducin-like G-protein.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.