Abstract

Both experimental and clinical liver fibrosis leave a metabolic footprint that can be uncovered and defined using metabolomic approaches. Metabolomics combines pattern recognition algorithms with analytical chemistry, in particular, 1H and 13C nuclear magnetic resonance spectroscopy (NMR), gas chromatography-mass spectrometry (GC-MS) and various liquid chromatography-mass spectrometry (LC-MS) platforms. The analysis of liver fibrosis by each of these methodologies is reviewed separately. Surprisingly, there was little general agreement between studies within each of these three groups and also between groups. The metabolomic footprint determined by NMR (two or more hits between studies) comprised elevated lactate, acetate, choline, 3-hydroxybutyrate, glucose, histidine, methionine, glutamine, phenylalanine, tyrosine and citrate. For GC-MS, succinate, fumarate, malate, ascorbate, glutamate, glycine, serine and, in agreement with NMR, glutamine, phenylalanine, tyrosine and citrate were delineated. For LC-MS, only β-muricholic acid, tryptophan, acylcarnitine, p-cresol, valine and, in agreement with NMR, phosphocholine were identified. The metabolomic footprint of liver fibrosis was upregulated as regards glutamine, phenylalanine, tyrosine, citrate and phosphocholine. Several investigators employed traditional Chinese medicine (TCM) treatments to reverse experimental liver fibrosis, and a commentary is given on the chemical constituents that may possess fibrolytic activity. It is proposed that molecular docking procedures using these TCM constituents may lead to novel therapies for liver fibrosis affecting at least one-in-twenty persons globally, for which there is currently no pharmaceutical cure. This in-depth review summarizes the relevant literature on metabolomics and its implications in addressing the clinical problem of liver fibrosis, cirrhosis and its sequelae.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.