Abstract
The metabolism of the structurally related 5HT3 antagonists ondansetron, alosetron and GR87442 in the rat, dog and human was determined in hepatocytes, liver microsomes and human recombinant microsomes. The profiles of phase I metabolites were similar in human hepatocytes and microsomes. The metabolites of all three compounds produced in rat, dog and human microsomes and hepatocytes were similar to those seen in vivo, with the major routes of metabolism being N-dealkylation and/or hydroxylation. There was more extensive metabolic processing in hepatocytes than in microsomes; however, sequential metabolism was less extensive in vitro compared with in vivo. The pharmacokinetics of the three 5HT3 antagonists investigated were dominated by CYP3A4 (and/or 2C9) compared with CYP1A2 in man, possibly determined by enzyme capacity rather than relative enzyme affinity. These data support the use of rat, dog and human hepatocytes for the prediction of in vivo metabolites of ondansetron, alosetron and GR87442.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.