Abstract

When uredospores of wheat stem rust were shaken for 3 hours with phosphate buffer (pH 6.2) containing propionate-1-C14, -2-C14, or -3-C14, about 55% of the carbon-14 was removed from the solution. With propionate-1-C14, most of the carbon-14 taken up was released as carbon dioxide-C14, whereas about 20% and 31% of propionate carbon 2 and carbon 3, respectively, was incorporated into the spores. The specific activity of a fraction consisting of the free amino acids of a hot-alcohol and hot-water extract of the spores increased markedly with increase in the position number of propionate in which the carbon-14 was located. A similar relation was observed for other fractions such as soluble carbohydrates, ether-soluble material, organic acids, and insoluble residue from spores. The most active amino acids isolated were glutamic acid, γ-aminobutyric acid, and alanine. Partial degradations showed that with propionate-2-C14the carboxyl groups of glutamic acid were especially radioactive, whereas with propionate-3-C14the internal carbons were most radioactive.It is concluded that propionate metabolism in the rust spores involved conversion of carbon 1 to carbon dioxide, and utilization of carbons 2 and 3 as acetate with carbon 2 behaving as the carboxyl carbon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call